Tableau de khélles

SUJETS DE COLLES 01

1. QUESTIONS DE COURS.

e Donner la définition d’un intervalle stable.

e Enoncer le théoréme des encadrements.

e Démontrer que si u,, ~ v, etsiz, ~ Yp,
n—oo n—oo

UnTp ~ UnplYn.
n—00

e Donner la définition d’une suite négligeable devant une autre
o Enoncer sans preuve le théoréme des suites adjacentes.

e Démontrer que u,, ~ v, siet seulement si
n—oo

un—vn:ngoo(vn).

e Qu’est-ce qu’un point fixe pour une application f7?
¢ Enoncer le théoréme du point fixe.

e Montrer que si u,, ~ v, alors (u,)* ~ (v,)® pour tout réel a.
n—oo n—oo

2. EXERCICES CLASSIQUES.

EXERCICE 1
Donner un équivalent et la limite des suites suivantes :
n? — 3" In(n?) — (In(n))? 0,5" —n%°

* T s * o= N * T 9m(n) B+ 1

st g (i), o dy=(Gn2ym) (VIem—1).  ® fa=(A-n) (7 ~1).

EXERCICE 2
Une compagnie de trains subit des retards pendant une journée : si un train est en retard, le train suivant sera en
retard avec la probabilité 0,85, et si un train est a ’heure, le train suivant sera en retard avec la probabilité 0,25.

Le premier train part & I’heure. Calculer la probabilité que le n® train soit en retard.

On notera R, : "le n® train est en retard", et on commencera par exprimer P(R,,+1) en fonction de P(R,,).

EXERCICE 3 1. Pour tout n de N*, montrer que I’équation
z+In(z)=n

possede une unique solution, notée x,, dans R .
Calculer z.

2. Etudier la monotonie de la suite (Tn)n>1-

3. Montrer que Vn > 1, n — In(n) < 2, < n.

4. En déduire un équivalent de x,,, puis sa limite.
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EXERCICE 4
On considére les deux suites (2 )nen €t (Yn), oy définies par :

=2 n = -2 n n
o etVneN, {'m TntY
Yo = -1 Yn+1 :2In*3yn

1. Déterminer deux réels a et b tels que : Vn € N, x40 = axy, 41 + by,
2. En déduire une expression de x,, puis de y, en fonction de n.

3. Les suites (zn)nen €t (yn), ey sOnt-elles convergentes ?

EXERCICE 5 |
Soit f(x) = e~ =, z € R. On définit (uy)nen par ug =0 et Vn € N, uyi1 = f(un).
1. a. Montrer que f posséde un unique point fixe A € [0;1].
b. Montrer que [0; 1] est stable par f.

c. Montrer que Vx € [0;1], |f/'(z)| < ﬁ

2. a. Montrer que pour tout n € N, u,, € [0;1].
b. Montrer que pour tout n € N,
1
[unt1 — Al < —=un — Al

Je

c. Montrer que (u,)nen est convergente et déterminer sa limite.

EXERCICE 6 .

On considére la suite définie par : u; = 2, ug = 3 et, pour tout n > 1, Upq9 = Upy1 — iun

1. Déterminer ’expression de u,, en fonction de n.

2. Etudier lim w,.
n—-+o0o

EXERCICE 7

Soit la suite u définie par up = 0 et Vn € N, up, 11 = v/u,, + 1. On pose f(z) = v/a + 1.

1

2

Déterminer les points fixes de f. On note r I'unique point fixe tel que r € [0, 2].

2. a. Montrer que Vn >0, 0<u,<?2.

1. a. Montrer que [0, 2] est stable par f et que Vz € [0,2], |f'(z)] <

=

Up — T . 1
5 puis que |u, —r| <

b. Montrer que Vn € N, |upy1 — 7] < | on—1°

c. Déterminer alors Lim wu,.
n——+oo

EXERCICE 8
Pour tout entier naturel n non nul, on définit la fonction f,, par, pour tout = € R,

fule) =

+n x.

-

On appelle C), sa courbe représentative dans un repére orthonormé (O,Z j) d’unité 5 cm.

1. a. Déterminer, pour tout réel z, f/ (x) et f” (x).
b. En déduire que la fonction f,, est strictement croissante sur R

2. a. Calculer lim f, (z) ainsi que lim f, ().
T——00 T—>—00

b. Montrer que les droites (D,,) et (D) d’équations y = nz et y = nz + 1 sont asymptotes de (Cy,)
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c. Déterminer les coordonnées du seul point d’inflexion, noté A, de (C,,).

d. Donner ’équation de la tangente (73) a la courbe (C1) en A;, puis tracer sur un méme dessin les droites
(D1), (D) et (T1) ainsi que Vallure de la courbe (Cy).

3. a. Montrer que I’équation f, (x) = 0 posséde une seule solution sur R, notée wu,,.
-1
b. Montrer que I'on a : Vn € N*, — < u, <O0.
n

c. En déduire la limite de la suite (uy)

-1
d. En revenant & la définition de u,,, montrer que u,, ~ —.
n—+4o0o 2n

3. EXERCICES PLUS DIFFICILES.

EXERCICE 9

Soit f(z) = 2™ +x — 1 pour n € N*.
Montrer que I’équation f,(z) = 0 admet une unique solution z,, €]0,1].
Démontrer que pour tout n € N*, f,11(2,) < fnt1(2ns1). En déduire la monotonie de la suite (z,).

Etablir que (x,) converge, et que sa limite £ vérifie : 0 < £ < 1.

oW o=

Montrer que : Vn € N*, x,, < /.
En procédant par I’absurde, montrer que £ = 1.

EXERCICE 10
Montrer que la suite définie par xo =1 et
x =
n+1 1 + n(xn)z
converge vers 0.

EXERCICE 11
Montrer que le nombre

o\ 2
1 1 (1 (1 )2)2
4 4 4 4
existe et calculer sa valeur.

On pourra étre amené a introduire astucieusement une suite récurrente dont le nombre a4 calculer est la limite.

EXERCICE 12
Soit f : R — R définie par f(z) = |z + (z — |])®. On définit la suite récurrente par

{ ug € R
Upt1 = f(un)

1. Etudier la continuité de f, dessiner son graphe.

2. Discuter la monotonie et la convergence de (uy)nen en fonction de ug.
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